The cyclization of 4-chlorobutanol in water was found by Heine $et~al.^{13}$ to have a rate constant of $2\cdot87\times10^{-4}~{\rm sec^{-1}}$ at $70\cdot5^{\circ}$. More recent measurements 14 at $50\cdot3^{\circ}$ have shown a rate constant of $3\cdot60\times10^{-5}~{\rm sec^{-1}}$ in good agreement with our measurements at atmospheric pressure. Our values of ΔH^* and ΔS^* are in agreement with the earlier measurements. 13 The values of ΔV^* in Table 2 show that the acceleration by pressure is comparatively small and decreases with increasing pressure. The acceleration is greater in 50% by volume acetone/water and is much greater again in methanol.

The neutral hydrolyses of methyl bromide, ethyl bromide, and n-butylchloride in water are closely analogous to the cyclization reaction of CBL. The absolute rate constant for the reaction of methyl bromide was not determined because the initial concentration of methyl bromide was not known accurately. The relative values given in Table 1 should however be accurate as they were found by using the same solution at different pressures. Our rate constant for the hydrolysis of ethyl bromide is in good agreement with the results of Robertson et al. The value of ΔV^* for the methyl bromide and ethyl bromide hydrolyses are very similar to the value of -14 ml/mole which can be derived from the measurements of these reactions by Strauss for 80% by volume ethanol/water.

The rate constant found for the hydrolysis of benzyl chloride in 50% by volume acetone/water at 1 atm agrees with the value of $2\cdot 2\times 10^{-7}$ sec⁻¹ extrapolated from the measurements of Bensley and Kohnstam¹⁷ at higher temperatures. This reaction has recently been studied at several pressures in aqueous ethanol¹⁸ containing up to $0\cdot 4$ mole fraction ethanol. The volume of activation was found to vary between -17 and -23 ml/mole with change of solvent composition with a maximum at $0\cdot 3$ mole fraction. The solvent used in our measurements contained $0\cdot 20$ mole fraction of organic component (acetone) and ΔV^* was found to be the same as that found in aqueous ethanol of the same composition.¹⁸ Although the reaction is classed as an $S_{\rm N}2$ reaction,¹⁹ it has some characteristics in common with $S_{\rm N}1$ reactions and an unusually polar transition state has been postulated for it.¹⁷ This is supported by the volume of activation which is comparable with that of the $S_{\rm N}1$ hydrolysis of t-butyl chloride in the same solvent.

The rate constants for the hydrolysis of t-butyl chloride in 50% and in 92% by volume acetone/water (0·20 and 0·74 mole fraction respectively) at atmospheric pressure agree with the values found by Winstein and Fainberg²⁰ at the lower concentration of acetone, and, by making a slight extrapolation, with those of Tommila $et\ al.^{21}$ at the higher concentration of acetone. The effect of pressure on this reaction

¹³ Heine, R. W., Miller, A. D., Barton, W. H., and Greiner, R. W., J. Am. chem. Soc., 1953, 75, 4778.

¹⁴ Swain, C. G., Kuhn, D. A., and Schowen, R. L., J. Am. chem. Soc., 1965, 87, 1553.

¹⁵ Robertson, R. E., Heppolette, J., and Scott, R., Can. J. Chem., 1959, 37, 803.

¹⁶ Strauss, W., Aust. J. Chem., 1957, 10, 381.

¹⁷ Bensley, B., and Kohnstam, G., J. chem. Soc., 1957, 4747.

¹⁸ Hyne, J. B., Golinkin, H. S., and Laidlaw, W. G., J. Am. chem. Soc., 1966, 88, 2104.

¹⁹ Kohnstam, G., in "Transition State." Chem. Soc. Special Publ. No. 16. (Chem. Soc.: London 1962.)

²⁰ Winstein, S., Fainberg, A. H., and Grunwald, E., J. Am. chem. Soc., 1957, 79, 5937.

²¹ Tommila, E., Tilikainen, M., and Viopo, A., Ann. Acad. Sci. fenn. AII, 1955, No. 65, 1.

TABLE 1

KINETIC MEASUREMENTS AT HIGH PRESSURES

Pressures at which the experiments were conducted are in atmospheres and are printed in **bold** numerals

Temp.	Constant	Results at Stated Pressures				
ningi -	(1) Cyclization	of 4-Chlorob	utanol in	Water: [C]	31, 0.01м	in The Bullion
	P (atm)	1	500	1500	3000	
39·8°	$10^5 k_1 (\text{sec}^{-1})$	1.03	1.15	1.35	1.67	
49.7	DESCRIPTION OF THE PROPERTY OF	3.26	3.54	4.54	5.62	
54.7	Manufactured of 1971 to 16	5 · 48	6.15	7.78	9.80	
59.6		$9 \cdot 95$	10.7	12.8	16.7	
50	$\Delta H_{\rm p}^{\bullet}$ (kcal mole ⁻¹)	22.1	$22 \cdot 3$	$22 \cdot 9$	23.4	
50	$\Delta S_{\mathbf{p}}^{\bullet}$ (e.u.)	-13.8	-12	-9	-7	
	(2) Hydrolysis	of n-Butyl Ch	loride in V	Vater; [Bu	nCl] ₀ 0·1m	d wall of any
diam'r.	to bride our a see the se	A Toler	1000	2000	3000	
25.0	$10^8 k_1 \; (\text{sec}^{-1})$	1.5		Control of Par	2.8	
40.1		7.8			25.0	
45.0		12·9 96·5	197	167	25.2	
65.0	(9) II-J-1		137	167	186	a daidw okanija
	(3) Hydrolysis o	1 Methyl Bro	700	1500	3000	paper of Manda
30.0	$k_{1,P}/k_1 \ (\pm 1\%)$	1.00	1.51	1.96	3.03	
00 0					VIII S INC. VI	
	(4) Hydrolysis					2000
20.0	1067- (200-1)	1 5·85	1000 8·53	1700 10·2	2000 11·1	3000
30.0	$10^6 k_1 \text{ (sec}^{-1)}$	Company of the last of the last	di la companya di la	STANDARD BY	I WELL !	13.6
	(5) Cyclization of Chlor					
ar 00	1077 (1)	1	500	1000	1500	2000 3000
25.09	$10^7 k_1 \; (\text{sec}^{-1})$	3.95	4.63	5.60	6.55	7.43 9.03
(6) N	eutral Hydrolysis of Benz	yl Chloride in				$hCH_2Cl]_0 0.05M$
	N Tall Sales and the last	1	1000	1500	2500	
25 · 1	$10^7 k_1 \; (\text{sec}^{-1})$	2.38	4.90	6.60	10.3	
(7)	Neutral Hydrolysis of t-B					Bu ^t Cl] ₀ 0·05м
The last		rum isin ia.	470	1020	1330	
25.0	$10^7 k_1 \; (\text{sec}^{-1})$	2.37	3.20	4.36	. 5.1	
(8) Neutral Hydrolysis of t-	Butyl Chlorid	le in Acete	one/Water	(90% w/w)); [ButCl] ₀ 0·1m
		1	1000		2000	
50.0	1077 / 11		1000	1500	2000	
90.0	$10^7 k_1 \; (\text{sec}^{-1})$	5.90	12.6	15.9	18.9	
90.0		5.90	12.6	15.9	18.9	
90.0	(9) Cyclization	5·90 of 4-Chlorobu	12.6 itanol in M	15.9	18.9	
25.0	(9) Cyclization	5.90	12.6	15·9 Iethanol; [18.9	ar and the same of
		5·90 of 4-Chlorobu 1	12·6 stanol in M 1500	15·9 Methanol; [3000	18.9	
25.0	(9) Cyclization	5·90 of 4-Chlorobu 1 1·92 17·1 70	12·6 atanol in M 1500 4·92	15·9 Methanol; [3000 7·75	18.9	m stay of t are too a promise derech marketensking
25·0 40·0	(9) Cyclization	5·90 of 4-Chlorobu 1 1·92 17·1	12·6 atanol in M 1500 4·92	15·9 Methanol; [3000 7·75	18.9	m star of t and the star of prompte derived man letter the
25·0 40·0 49·7	(9) Cyclization	5·90 of 4-Chlorobu 1 1·92 17·1 70 238	12·6 stanol in M 1500 4·92 41·1	15·9 Methanol; [3000 7·75 69·7	18·9 СВ] ₀ 0·1м	0·5m
25·0 40·0 49·7	(9) Cyclization $10^8k_1 \; (\mathrm{sec}^{-1})$	5·90 of 4-Chlorobu 1 1·92 17·1 70 238	12·6 stanol in M 1500 4·92 41·1	15·9 Methanol; [3000 7·75 69·7	18·9 СВ] ₀ 0·1м	0-5м
25·0 40·0 49·7	(9) Cyclization $10^8k_1 \; (\mathrm{sec}^{-1})$	5·90 of 4-Chlorobu 1 1·92 17·1 70 238 olysis of Ethy	12·6 Itanol in M 1500 4·92 41·1	15·9 Methanol; [3000 7·75 69·7	18·9 СВ] ₀ 0·1м	0.5м
25·0 40·0 49·7 59·6	(9) Cyclization 10^8k_1 (sec ⁻¹) $(10) \text{ Neutral Methan}$ 10^8k_1 (sec ⁻¹)	5.90 of 4-Chlorobu 1 1.92 17.1 70 238 olysis of Ethy 1 2.56	12·6 atanol in M 1500 4·92 41·1 cl Chloride 850 6·11	15·9 Methanol; [3000 7·75 69·7 in Methan	18.9 CB] ₀ 0.1m ol; [EtCl] ₀	tati aperite Pala ett
25·0 40·0 49·7 59·6	(9) Cyclization 10^8k_1 (sec ⁻¹) (10) Neutral Methano	5.90 of 4-Chlorobu 1 1.92 17.1 70 238 olysis of Ethy 1 2.56 ysis of t-Buty	12·6 atanol in M 1500 4·92 41·1 dl Chloride 850 6·11 dl Chloride	15·9 Methanol; [3000 7·75 69·7 in Methan in Methan	18·9 CB] ₀ 0·1m ol; [EtCl] ₀	tati aperite Pala ett
25·0 40·0 49·7 59·6	(9) Cyclization 10^8k_1 (sec ⁻¹) (10) Neutral Methanol 10^8k_1 (sec ⁻¹) (11) Neutral Methanol	5.90 of 4-Chlorobu 1 1.92 17.1 70 238 olysis of Ethy 1 2.56	12·6 atanol in M 1500 4·92 41·1 cl Chloride 850 6·11	15·9 Methanol; [3000 7·75 69·7 in Methan	18.9 CB] ₀ 0.1m ol; [EtCl] ₀	tati aperite Pala ett
25·0 40·0 49·7 59·6	(9) Cyclization 10^8k_1 (sec ⁻¹) $(10) \text{ Neutral Methan}$ 10^8k_1 (sec ⁻¹)	5.90 of 4-Chloroby 1 1.92 17.1 70 238 olysis of Ethy 1 2.56 ysis of t-Buty	12·6 atanol in M 1500 4·92 41·1 cl Chloride 850 6·11 l Chloride 500	15.9 Methanol; [3000 7.75 69.7 in Methan 1500	18.9 CB] ₀ 0.1m ol; [EtCl] ₀ ol; [Bu ^t Cl] 3000	tati aperite Tala ett
25·0 40·0 49·7 59·6 60·0	(9) Cyclization 10^8k_1 (sec ⁻¹) (10) Neutral Methanol 10^8k_1 (sec ⁻¹) (11) Neutral Methanol 10^7k_1 (sec ⁻¹) (12) Cyclization of Brown 10^7k_1 (sec ⁻¹)	$5\cdot 90$ of 4-Chlorobu $1 \cdot 92$ $17\cdot 1$ 70 238 olysis of Ethy $2\cdot 56$ ysis of t-Buty 1 $7\cdot 3$ 210 omobutyleated	12·6 atanol in M 1500 4·92 41·1 d Chloride 850 6·11 d Chloride 500 12·6 370 ehol Monochol	15·9 Methanol; [3000 7·75 69·7 in Methan 1500 22·7 805 ether in Al	18.9 CB] ₀ 0.1m ol; [EtCl] ₀ 3000 49.5	0 0∙05м
25·0 40·0 49·7 59·6 60·0	(9) Cyclization 10^8k_1 (sec ⁻¹) (10) Neutral Methanol 10^8k_1 (sec ⁻¹) (11) Neutral Methanol 10^7k_1 (sec ⁻¹) (12) Cyclization of Brown 10^7k_1 (sec ⁻¹)	5.90 of 4-Chlorobu 1 1.92 17.1 70 238 olysis of Ethy 2.56 ysis of t-Buty 1 7.3 210	12·6 atanol in M 1500 4·92 41·1 d Chloride 850 6·11 d Chloride 500 12·6 370 ehol Monochol	15·9 Methanol; [3000 7·75 69·7 in Methan 1500 22·7 805 ether in Al	18.9 CB] ₀ 0.1m ol; [EtCl] ₀ 3000 49.5	₀ 0·05м